
Sponsored by Sogeti 

Problems

October 22, 2005

1



2



A ASM – The Abelian Sandpile Model

Problem

Modeling sandpiles is an interesting problem in statistical physics. When dropping a sand grain
on an existing pile, most of the time the grain will stick to it or a couple of grains will slide down.
Occasionally, however, adding one extra grain to a pile will lead to a huge avalanche of sand grains
falling down.

A simple way to model sandpiles is the Abelian Sandpile Model. In this simple model the sandpile
is described as a two-dimensional lattice with on each lattice site a height (the number of sand
grains on that lattice site). When an additional grain is dropped on a lattice site, its height is
increased by one. If the height becomes larger than a certain critical height, sand grains begin
to topple. This is modeled by reducing the number of sand grains on the site that is too high by
four, and increasing the heights of its four neighbors by one. If some of the neighbors exceed the
critical height after this toppling, sand grains topple from those points too until the situation is
stable again. If a sand grain falls off the lattice, the grain is gone.

Given an initial sandpile and the positions where the grains are dropped, determine the final
sandpile.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with four integers, y, x, n and h with 1 ≤ y, x ≤ 100, 0 ≤ n ≤ 100 and 3 ≤ h ≤ 9:
the dimensions of the sandpile, the number of dropped sand grains and the critical height.

• y lines, each with x characters in the range ’0’. . . ’9’: the heights of the initial sandpile. Each
height is less than or equal to the critical height.

• n lines with two integers yi and xi with 1 ≤ yi ≤ y and 1 ≤ xi ≤ x: the positions where the
grains are dropped.

Output

For every test case in the input file, the output should contain y lines, each with x characters in
the range ’0’. . . ’9’: the heights of the final sandpile.

3



Example

Input

3

3 4 1 5

1023

2344

0000

2 3

3 4 1 4

1023

2344

0000

2 3

7 7 1 9

9999999

9999999

9999999

9999999

9999999

9999999

9999999

4 4

Output

1023

2354

0000

1034

2421

0011

7999997

9799979

9979799

9996999

9979799

9799979

7999997

4



B Cell Phones

Problem

Lone City is not a town, nor a village. It is not even a hamlet. It is just a few hundred houses
scattered over the plain, like someone had fired a buckshot of buildings, with the highway cutting
it in two parts. This lack of center has to do with the peoples attitude: they do not like living too
close to each other. New houses are erected at decent distance from existing buildings.

Things changed when a new generation of Loners grew up. They wanted to enjoy the blessings
of modern society. They wanted fast food, disco’s and cell phones. And they found out that cell
phones are useless outside the range of a transmitting antenna.

It took some time to convince the telephone provider that Lone City desperately needed a trans-
mitting antenna. Finally the company agreed to erect an antenna, to be located somewhere along
the highway, for easy maintenance. This type of antenna has a range of 1000 meters, so most likely
not all Loners will be in range. Antoine Master, the head of the Antennae Department, tried to
find a place for the transmitting antenna such that it would be profitable for as many people as
possible. To that purpose he created a list of all houses, containing for each house its location and
the number of inhabitants. (Initially only people over 18 were counted, until someone pointed out
that the most dedicated cell phone users are under 18.)

And then Antoine started thinking...

Can you help Antoine to find the best place for the transmitting antenna?

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• A line with a positive number h with 0 < h ≤ 1000: the number of houses in Lone City.

• h lines, each line containing three positive numbers, x, y, n, with −104 ≤ x, y ≤ 104 and
0 ≤ n ≤ 100, representing the location and number of inhabitants of each house.

The highway is the line y = 0.

Output

For every test case in the input file, the output should contain a single number, on a single line: the
number of people living in a house within reach of the antenna (that is: at a distance of at most
1000 meters), provided that the antenna is placed along the highway at the best place possible.

5



Example

Input

2

2

100 100 20

500 500 30

3

1000 -500 4

4000 500 2

5000 -400 3

Output

50

5

6



C Evacuation

Problem

The police of Delft has received a message that a bomb has been placed in the city’s highest
building. A crisis team is formed, and they decide to evacuate the building as fast as possible.
Luckily it is past five, and most people have already left the building. Using the building’s security
cameras, the crisis team could easily make a list of the people left in the building, and the floors
where they stay. The crisis team decides to use a single elevator for evacuation, one that happens
to be at the top floor of the building.

To minimize the risk of the bomb being activated by the vibrations of the elevator, the elevator
will only move down, and move down only once. An evacuation plan is made, and using the
building’s intercom, the people in the building are asked to use the stairs (upwards or downwards)
to the floor where they will be picked up by the elevator. The elevator happens to be located next
to the stairs. Some people on the lower floors may have to leave the building using only the stairs.

The elevator needs a constant time to move down a floor, and to close its doors (time needed to
open the doors is ignored). People take a constant time to walk down or up a staircase as well.
At the beginning, the doors of the elevator are closed.

Your task is to write a program to make the fastest evacuation plan possible, and calculate how
fast everybody in the building can reach the ground floor.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• A line with three positive integers, m (m ≤ 100): the time it takes the elevator to move
down one floor, s (s ≤ 100): the time needed for the elevator to close its doors after the last
person on a floor has entered the elevator, and w (w ≤ 100): the time needed for a person
to walk to the next floor either up or down, using the stairway.

• A line with two integers nf and nw. The number nf (0 < nf ≤ 1000) is the total number
of floors in the building (excluding ground level), and nw (0 ≤ nw ≤ nf + 1) is the number
of floors on which people are waiting to be evacuated (these buildings really have huge
elevators!).

• nw lines, each with one integer, fi, the floor on which persons are present (0 ≤ fi ≤ nf ). Per
test case, all fi are unique. According to European convention the ground floor has number
0.

You may assume that all people involved will fit into the elevator.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the time needed to get everybody in the building on the ground floor.

7



Example

Input

3

1 1 4

5 3

5

1

0

1 1 4

5 6

0

1

2

3

4

5

10 10 20

1000 0

Output

6

8

0

8



D Giant Cover

Problem

A student at the Lutjebroek University of Technology wants to cover all buildings of the University
with an enormous translucent plastic cover. This will make the use of umbrellas in this region
unnecessary, significantly cutting costs.

The costs of the cover are proportional to its area. With the purpose of the cover in mind, the
student wants to reduce the costs of the cover as much as possible. You are to write a program
that will help him with this by calculating the minimal area of a cover.

The whole campus terrain of the University is flat and has a rectangular shape. All buildings on
it have the shape of the union of a set of boxes, each of which stands on the ground. The cover
must cover all buildings and will be attached to the four sides of the campus at ground level.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with the four integers x1, y1, x2, y2, separated by spaces, describing the campus
terrain [x1, x2]× [y1, y2]. The numbers satisfy −104 ≤ x1 < x2 ≤ 104 and −104 ≤ y1 < y2 ≤

104.

• One line with the integer n, 0 ≤ n ≤ 400, the number of boxes that form the buildings on
the campus.

• n lines, with on the ith line the five integers ai, bi, ci, di, hi, separated by spaces, describing
a box with footprint [ai, ci] × [bi, di] and height hi above the ground. The numbers satisfy
x1 ≤ ai < ci ≤ x2, y1 ≤ bi < di ≤ y2 and 0 < hi ≤ 104.

Note: [a, c] × [b, d] is a so called Cartesian product and denotes the rectangular area
{

(x, y) ∈ R
2 : a ≤ x ≤ c, b ≤ y ≤ d

}

.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the area of the smallest cover, using a precision of four decimals behind the decimal point. The
rounding should occur as usual; a digit is rounded up if the next digit is ≥ 5, otherwise it is
rounded down.

Example

The last example testcase corresponds to figure 1.

9



The boxes

The cover

Their union

Figure 1: The last example testcase illustrated.

Input

3

0 0 12 10

0

0 0 12 10

1

2 2 8 8 3

0 0 12 10

2

2 4 10 8 3

4 2 8 6 5

Output

120.0000

169.7443

203.7598

10



E North-Western Winds

Problem

A strong North-Western wind is blowing. When sailing this means that you can sail to the East,
to the South or to any direction between East and South. It is impossible to go either North- or
Westwards.

In the ocean there are a large number of small islands. These islands are described by coordinate
pairs (x, y) on a grid. The positive y-direction is Northwards and the positive x-direction is
Eastwards. We’d like to sail from one island to another. For how many pairs of islands is this
possible? (Note: a pair consists of two different islands.)

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• One line with one number n with 1 ≤ n ≤ 75000: the number of islands.

• n lines with two numbers xi and yi with −109 ≤ xi, yi ≤ 109: the coordinates of the islands.
No two islands are located at the same coordinates.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of pairs of islands for which you can sail from one to the other.

Example

Input

2

4

-10 -10

-10 10

10 -10

10 10

3

1 3

2 2

3 1

Output

5

3

11



12



F Shepherds and Engineers

Problem

Westmoreland is a peaceful country, where quiet rivers slowly flow between rough moors, and where
peaceful shepherds herd their flock. In the Northern part of the country the town is located, with
its sheep market and its School of Engineering. Every now and then a shepherd will select part
of his flock, and lead them to the market, to be sold. In former days the shepherds used to wade
with their flock through the rivers, at a ford. After heavy rainfall, however, the rivers turned into
violent streams, and crossing became impossible. Shepherds nevertheless trying to cross would
lose some, or even all of their sheep.

A graduate from the School of Engineering recognized a societal problem to be solved. He asked
the king some money, to build bridges. The king, who believed in private enterprise, did not make
any money available, but allowed the engineer to build a bridge, and to impose a toll on every
shepherd crossing that bridge. Moreover the king promulgated a law forbidding shepherds to wade
through the river, when a bridge was available.

That first bridge became a great success – to the engineer, that is. Soon more bridges were built,
and within a few years the country was full of bridges. The shepherds were less happy. Some
engineers imposed quite excessive tolls, up to 100% of the sheep, which the shepherds considered
as theft rather than toll.

Things changed when the king died, and his son (who happened to be married to a shepherd’s
daughter) accessed the throne. He promulgated a law against excessive toll, stating that:

Whenever a shepherd with some sheep will cross a bridge and the engineer who built
the bridge imposes a toll,

1. What the shepherd keeps shall be more than what the engineer takes,

2. What the shepherd keeps shall be an integral multiple of what the engineer takes.

The shepherds were quite happy with this law, and started inventing clever schemes to avoid toll.

A shepherd wanting to sell 40 sheep in the town, and living four bridges away from the
town, could enter the first bridge with 47 sheep. The maximum toll allowed would be
1 sheep, so he had 46 sheep left. At the next bridge he would pay no more than two
sheep, and have 44 sheep left. Instead of paying a toll of 11 sheep at the next bridge,
he would donate one sheep to a local shepherd, pay one sheep to cross the third bridge,
and have 42 sheep left. Again donating one sheep to a local shepherd, he would pay 1
sheep at the last bridge, and enter the town with 40 sheep.

At their next annual meeting the shepherds raised money, to found a chair in Mathematical
Engineering at the School of Engineering (to study the distribution of prime numbers). And they
hired a Computer Engineer, to write a program to solve the following problem:

Given the number s of sheep a shepherd wants to sell at the market, and the number
b of bridges that shepherd has to cross to reach the market, what will be the minimum
number of sheep he has to start his travel with?

The example given above shows that starting with 47 sheep, and crossing 4 bridges, one may enter
the town with 40 sheep. It is not immediately evident, however, that the same result could not
be obtained starting with less sheep.

Observe that occasionally the best solution may result in entering the town with more sheep than
required.

13



Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• A line with two positive numbers: the number s (0 < s ≤ 106) of sheep that should enter
the town, and the number b (0 ≤ b ≤ 1000) of bridges to be crossed.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of sheep to start with.

Example

Input

3

40 4

13 1

10 10

Output

47

17

34

14



G Ski Lifts

Problem

Climate changes made the rolling mountains of Alaska a perfect place for all-season skiing. To
transform this region into a successful area for skiing, however, ski lifts are needed. People skiing
do not like walking upwards. They want to ski downhill; when needed they are willing to ski on
the same level for some time.

Optimal use of the area requires that, starting from an arbitrary point, a skier should be able to
reach any other point just by skiing downhill or staying at the same level, and occasionally taking
a ski lift.

A sufficient amount of ski lifts must be planned and constructed such as to fulfill this condition.
On the other hand, building more ski lifts than necessary is a waste of money.

What is the minimal number of ski lifts needed?

As ski lifts are built on high poles, we assume that a ski lift can be constructed from any place to
any place, regardless of the terrain in between. A ski lift is unidirectional.

It is important to know that in Alaska one is not allowed to ski in any other direction than North,
South, East or West.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• A line with two positive numbers w and l with 1 ≤ w, l ≤ 500: the width and length of the
area.

• w lines, each line containing l positive numbers hij , with 0 ≤ hij ≤ 109, representing the
height in each point of the area.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the minimum number of ski lifts to be built.

Example

Input

2

5 5

1 1 0 0 0

1 1 1 1 0

0 1 9 1 0

0 1 1 1 1

0 0 0 1 1

1 10

10 20 30 40 50 60 70 80 90 100

Output

2

1

15



16



H Tables

Problem

The cafeteria of the EWI Faculty of Delft University of Technology has a lot of tables. These
tables are not square or rectangular, they have the form of a trapezoid, an isosceles trapezoid,
with sides 1,1,1,2, as in the drawing below. It can be seen as half a hexagon or as composed of
three equilateral triangles. Such a table offers place for five to sit, though at the acute angles there
is few space for plates.

The shape of a table.

For larger companies, the tables can be put together to form a larger table. The more tables are
used, the more shapes can be created. The other way round, one may ask whether a given shape
can be built with these tables and whether that can be done in more than one way. A hexagon
can be built from two tables in three different ways.

Three different ways to form a hexagon.

It could be argued that these three solutions may be reduced to a single solution, using rotation.
For this problem we consider these three solutions to be different, however.

The triangle encoding.

The shapes to be formed are described using a pattern of triangles. The nodes in this pattern
have a code formed from 3 digits, in the range 0 . . . 8. The sum of these three digits is 8. We
describe a shape by enumerating the nodes of its contour: [116, 314, 134, 125, 026]. The contour is
built connecting the nodes along the gridlines: connect the first node with the second node, the
second node with the third one, etc., and finally connect the last node with the first. This implies
that neighboring nodes are always on a common gridline.

The following rules apply:

1. When walking along a contour, the enclosed area is on the left-hand side;

2. The enclosing contour does not cross itself, nor are nodes used multiple times;

17



3. The enclosed shape has no holes (in fact this is a consequence of 1 and 2).

A shape is given by the nodes of the enclosing contour. Calculate the number of ways this shape
can be made using the trapezoid tables.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each
test case has the following format:

• The first line contains a single number, n, the number of nodes of the contour.

• The second line contains n codes for the nodes of the contour, as described above. These
codes are separated by a single space.

Output

For every test case in the input file, the output should contain a single number, on a single line:
the number of different ways of creating the given shape with the trapezoid tables.

Example

Input

2

6

107 206 215 125 026 017

5

116 314 134 125 026

Output

3

0

18


